
Individual Part

PROBLEM 1:
Find all square roots of the matrix

M =

4 5 16
0 9 16
0 0 25

 .

(Matrix B is said to be a square root of M if the matrix product B ·B is equal to M , ie. B2 = M)

Solution:
Since M is upper-triangular, its eigenvalues are its diagonal entries, that is, 4, 9 and 25. Let S be a matrix whose

columns are eigenvectors of M for the respective eigenvalues 4, 9, 25. Then S has the following form:

S =

1 1 1
0 1 1
0 0 1

 .

It is not hard to see that

S−1 =

1 −1 0
0 1 −1
0 0 1

 .

Moreover,

D := S−1MS =

4 0 0
0 9 0
0 0 25

 .

The number of square roots of M is the same as the number of square roots of its diagonalization D. It follows from
the fact that E is a square root of M if and only if SES−1 is a square root of D. Let E be a square root of D.
Then EE = D and hence ED = DE. Thus, the latter equality implies that E must preserve eigenspaces of D and
consequently E must be diagonal. Hence, we deduce that D has exactly eight square roots, namely

√
D =

±2 0 0
0 ±3 0
0 0 ±5

 .

Hence all solutions to X2 = M are:

±

2 1 2
0 3 2
0 0 5

 , ±

−2 5 2
0 3 2
0 0 5

 , ±

2 −5 8
0 −3 8
0 0 5

 , ±

2 1 −8
0 3 −8
0 0 −5

 ,
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PROBLEM 2:
Let f : R+ → R+ be a monotonic function satisfying f(x) + f(y) = f(x + y + xy) for all x, y ∈ R+. Find the

value
f(2)

f(1)
.

Solution:
Put f(x) = h(1 + x), ie. h(x) = f(x− 1). Thus h : (1,+∞)→ (0,+∞) and h(x) + h(y) = f(x− 1) + f(y − 1) =

f(xy − 1) = h(xy). It is well known fact (see lemma) that h(x) = logα x for some α > 1. Hence f(x) = logα(1 + x)

and
f(2)

f(1)
=

logα 3

logα 2
= log2 3.

Lemma [Functional eq. for logarithm]: The monotonic functions f : (1,+∞)→ R+ satisfying f(x) + f(y) = f(xy)
for x, y > 0 are of the form f(x) = logα x for α > 1.

Proof of the Lemma: Putting y = x gives f(x2) = 2f(x). With y = kx we get f(xk+1) = (k + 1)f(x) for
k = 1, 2, . . . . Putting x = k

√
x in the last formula gives f(x1/k) = 1

kf(x). Hence we get f(xq) = qf(x) for every
x > 1 and rational q ∈ Q+.

As function f is monotonic, it has its right and left limits in every point of its domain. So f(xr) is between
lim
n→∞

f(xpn) = lim
t→x−

f(tr) and lim
n→∞

f(xqn) = lim
t→x+

f(tr) for any real number r ∈ R+ and two sequences of rationals

pn, qn → r such that . . . < pn < pn+1 < . . . < r < . . . < qn+1 < qn < . . .. But f(xqn)−f(xpn) = (qn−pn)f(x) −→ 0,
hence f(xr) = rf(x) for any x > 1 and r > 0. Now it is enough to take α = max{x | f(x) < 1} to have f(αt) = t,
ie. f(x) = logα x. �
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PROBLEM 3:
Alice and Ben play a following game: they choose a sequence of two results of coin toss, then they throw a coin

until one of those sequences appear. The game is won by whose sequence appeared first.
Ben chose “HH”, and before Alice made her move, she has discovered that the coin is unfair: the heads come out

with probability 2/3. What sequence should Alice choose to maximize her probability of winning the game? And
what is this probability?

Solution:
Alice can choose one of the following sequences: (a) “TH”, (b) “HT” and (c) “TT”. In these cases the game can

be represented as the following directed graphs:

So in the case (a) the probability to get “HH” first is only p2 = 4/9, hence “TH” will appear first with probability
1−p2 = 5/9.r In the case (b) every game has to pass the point “H”, after that the probability to get “HH” is p = 2/3,
and to get “HT” is 1− p = 1/3.

And in the case (c) we have

Prob(“HH” first) = p
(
p+ (1− p)p+ p(1− p)p+ (1− p)p(1− p)p+ · · ·

)
= p
(
p+ p(1− p)

) ∞∑
n=0

(1− p)npn

=
p2(2− p)

1− (1− p)p
=

16

21

To get the probability for “TT” it is enough to interchange p and 1− p, ie.

Prob(“TT” first) =
(1 + p)(1− p)2

1− (1− p)p
=

5

21

In the conclusion Alice should choose “HT”, and then her probability to win will be 5/9. �
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PROBLEM 4:
Calculate the number of subsets of the set {0, 1, . . . , 10} which contain no three consecutive elements.

Solution:
Let Cn be the number of subsets of the set {0, 1, . . . , n} with no three consecutive elements. These subsets either

contain n, or they do not. In the first case either they contain n− 1 as their element, or they do not. If n− 1 and n
are their element, then they do not contain n− 2. So their number is a sum of Cn−3 and Cn−2.

In the second case their number equals to Cn−1. Hence

Cn = Cn−1 + Cn−2 + Cn−3 .

Direct computation shows that C0 = 2 (∅ and {0}), C1 = 4 (∅, {0}, {1} and {0, 1}) and C2 = 7 (∅, {0}, {1}, {2},
{0, 1}, {0, 2} and {1, 2}). So  Cn

Cn−1
Cn−2

 =

1 1 1
1 0 0
0 1 0

n−2 C2

C1

C0

 .

Hence C10 = 927. �
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PROBLEM 5:
Calculate the integral

+∞∫
0

(1− cosx) sinx

x2
dx .

Solution:
We have

+∞∫
0

(1− cosx) sinx

x2
dx =

+∞∫
0

( 1∫
0

sin xt dt
) sinx

x
dx =

1∫
0

( +∞∫
0

sinxt sinx
dx

x

)
dt ,

since all integrand functions are bounded, uniformly continuous and integrable. Let

I(w) =

1∫
0

( +∞∫
0

sinxt sinx e−wx
dx

x

)
dt .

The integral we want to calculate is equal to I(0).
The trigonometric formulas gives sinxt sinx = 1

2

(
cos(1 − t)x − cos(1 + t)x

)
. Moreover, for the same reason as

before (ie. all functions are bounded, uniformly continuous and integrable), we have

d

dw
I(w) = −

1∫
0

(1

2

+∞∫
0

(
cos(1− t)x− cos(1 + t)x

)
e−wx dx

)
dt .

The easy integration by parts shows that

+∞∫
0

cosαx eβx dx =
β

α2 + β2
.

Thus

d

dw
I(w) = −1

2

1∫
0

( w

(1− t)2 + w2
− w

(1 + t)2 + w2

)
dt =

1

2
arctan 2w − arctanw .

Now we have lim
w→+∞

I(w) = 0 and
∫

arctanx dx = x arctanx− log
√

1 + x2 + C. Hence

I(0) = −
+∞∫
0

I ′(w)dw = lim
M→+∞

log

√
1 + 4M2

√
1 +M2

= log 2 .

�
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Lemma []: Let f : R+ → R be an integrable real function, such that limits lim
x→0+

f(x) = fo and lim
x→+∞

f(x) = f∞

exist. Then
+∞∫
0

f(αx)− f(βx)

x
dx = (fo − f∞) log

β

α

for any real α, β > 0.

Proof of the Lemma: We have
E∫
ε

f(αx)

x
dx =

αE∫
αε

f(x)

x
dx

for 0 < ε < E < +∞. Hence

E∫
ε

f(αx)− f(βx)

x
dx =

βε∫
αε

f(x)

x
dx−

βE∫
αE

f(x)

x
dx = Iε − IE .

Let now f(x) = C + o(1) with x→ 0+ or +∞, where o is Landau’s little-o symbol. Thus

βX∫
αX

f(x)

x
dx =

βX∫
αX

C + o(1)

x
dx =

(
C + o(1)

)
log x

∣∣∣βX
αX

=
(
C + o(1)

)
log

β

α
.

Hence letting ε→ 0+ and E → +∞ leads to

+∞∫
0

f(αx)− f(βx)

x
dx = lim

ε→0+
Iε − lim

E→+∞
IE = (fo − f∞) log

β

α
.

�
We have

(1− cosx) sinx

x2
=

sin x
x −

2 cos x sin x
2x

x
=
f(x)− f(2x)

x

where f(x) = sin x
x . So, as lim

x→0+
f(x) = 1 and lim

x→+∞
f(x) = 0, we get

+∞∫
0

(1− cosx) sinx

x2
dx =

+∞∫
0

f(x)− f(2x)

x
dx = (1− 0) log

2

1
= log 2 .

�
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Team Part

PROBLEM 1:
Calculate the integral ∫ 1

0

arctan
x

1− x
dx.

Solution:
It is easy to check that d

dx arctan x
1−x = 1

2x2−2x+1 . Thus we can compute the integral by integration by parts

taking x− 1
2 as anti-derivative of 1:∫ 1

0

1 · arctan
x

1− x
dx = (x− 1

2
) arctan

x

1− x

∣∣∣∣1
0

−
∫ 1

0

x− 1
2

2x2 − 2x+ 1
dx

= lim
x→1−

(x− 1

2
) arctan

x

1− x
− 1

4
ln(2x2 − 2x+ 1)

∣∣∣∣1
0

=
π

4
.

�
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PROBLEM 2:
Let f : (0,∞)→ (0,∞) be a continuous function with the following properties:

(1) f(x+ y) 6 f(x) + f(y), for every x, y ∈ (0,∞) ,

(2)

∫ ∞
0

f(x)

1 + x2
dx <∞ .

Find

lim
x→∞

f(x) ln(x)

x
.

Solution:
Let An = [2n, 2n+1] for every n ∈ N, let

an = sup
x∈An

f(x)

x
and bn = inf

x∈An

f(x)

x
,

and let xn, yn ∈ An be such that an = f(xn)
xn

and bn = f(yn)
yn

. Then

0 6 an+1 =
f(xn+1)

xn+1
=
f(2xn+1

2 )

xn+1
6

2f(xn+1

2 )

xn+1
=
f(xn+1

2 )
xn+1

2

6 an.

Moreover

an+2 =
f(y + xn+2 − yn)

xn+2
6
f(yn)

yn

yn
xn+2

+
f(xn+2 − yn)

xn+2 − yn
xn+2 − yn
xn+2

6 bn
yn
xn+2

+ an
xn+2 − yn
xn+2

6
bn + 7an

8

We have ∫ ∞
0

f(x)

1 + x2
dx >

∫ ∞
1

f(x)

2x2
dx =

∞∑
n=0

∫
An

f(x)

x

x

2x2
dx >

∞∑
n=0

bn

∫
An

1

2x
dx >

∞∑
n=0

bn ln(2)

2
,

so the series
∑∞
n=0 bn is convergent. Since an+2 6

bn+7an
8 ,

k∑
n=2

an 6 7a0 + 7a1 +

k−2∑
n=0

bn

for every k > 2. Hence the series
∑∞
n=0 an is convergent. Since the sequence (an) is decreasing,

2(a[n2 ] + · · ·+ an) > nan.

On the other hand, since the series
∑∞
n=0 an is convergent for every ε > 0, there exists N such that nan 6 ε for

every n > N Hence limn→∞ nan = 0. Applying the fact that

f(x) ln(x)

x
6 an(n+ 1) ln(2)

for every x ∈ An, gives limx→∞
f(x) ln(x)

x = 0. �
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PROBLEM 3:
Determine for which n = 1, 2, . . . there exists a solution to matrix equation X2+X+In = 0n in the space Mn(F2)

of n×n matrices with entries from the smallest field, ie. F2 =
(
{0, 1},+, ·

)
with 0 + 0 = 1 + 1 = 0, 0 + 1 = 1 + 0 = 1

and 0 ·0 = 0 ·1 = 1 ·0 = 0, 1 ·1 = 1. The matrices In and 0n are the identity matrix and the zero matrix of dimension
n×n.

Solution:
The polynomial x2 + x + 1 has no zeroes in F2, as x(x + 1) = 0 for all x∈ F2 = {0, 1}, so there is no solution

in M1(F2). The matrices

(
1 1
1 0

)
and

(
0 1
1 1

)
are the solutions to that equations in M2(F2), what can be verified

directly. Hence the equation has solution in M2n(F2), namelyV1 . . .

Vn

 ,

where V1, . . . , Vn are the solutions in M2(F2).
In the case of n odd we proceed as following. Let K2 be the analytic closure of the field F2, and let ε1, ε2 ∈ K2

be two solutions to x2 + x+ 1 = 0. We have ε1 + ε2 = 1 = ε1 · ε2 and ε1 + ε1 = 0 = ε2 + ε2 of course.
Now every eigenvalue of the possible solution X should satisfy x2 + x+ 1 = 0, so they all are equal to either ε1

or ε2. But as number of eigenvalues (with their multiplicity) is odd, there are also odd number of either ε1 or ε2
among them, when the number of other eigenvalues are even. Hence the trace of X equals to either ε1 or ε2, which
is not possible because they are not elements of F2. �
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PROBLEM 4:
Let M be a square matrix. Define

cos(M) := I − 1

2!
M2 +

1

4!
M4 − 1

6!
M6 + · · · ,

where I is the identity matrix. Calculate cos(M) for

M =
π

2

(
7 −3
−3 7

)
.

Solution:
Let

A =

(
7 −3
−3 7

)
.

Then (
1 1
1 −1

)(
4 0
0 10

)(
1 1
1 −1

)
=

(
7 −3
−3 7

)
.

Observe that (1, 1)T is an eigenvector for an eigenvalue λ = 4, but (1,−1)T is an eigenvector for an eigenvalue λ = 10.
Furthermore, (

1 1
1 −1

)−1
=

(
1/2 1/2
1/2 −1/2

)
.

Hence

cos(M) =

(
1 1
1 −1

)[(
1 0
0 1

)
− 1

2!

(π
2

)2(42 0
0 102

)
+

1

4!

(π
2

)4(44 0
0 104

)
− . . .

](
1 1
1 −1

)−1
=

(
1 1
1 −1

)
P

(
1 1
1 −1

)−1
,

where

P =


∞∑
k=0

(−1)k 1
(2k)! (2π)2k 0

0
∞∑
k=0

(−1)k 1
(2k)! (5π)2k

 =

(
cos(2π) 0

0 cos(5π)

)
.

Finally,

cos(M) =

(
1 1
1 −1

)(
cos(2π) 0

0 cos(5π)

)(
1/2 1/2
1/2 −1/2

)
=

(
1 1
1 −1

)(
1 0
0 −1

)(
1/2 1/2
1/2 −1/2

)
=

(
0 1
1 0

)
.

�
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PROBLEM 5:
Let G be a group such that a3b3 = (ab)3 and a5b5 = (ab)5 for each a, b ∈ G. Show that G is abelian (ie. ab = ba

for all a, b ∈ G).

Solution:
It is easy to see that

a3b3(ab)3 = ababab⇒ a2b2 = baba

and
a5b5 = (ab)5 = ababababab⇒ a4b4 = babababa.

Both above equalities gives
a2b2a2b2 = a4b4 ⇒ b2a2 = a2b2 = baba⇒ ab = ba

for all a, b ∈ G. �
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PROBLEM 6:
Verify wether the number of ways to exchange 10 Euro into coins of value 1, 2, 5 and 10 cents (we assume that

two families of coins with the same numbers of coins of the same value coincide) are greater or smaller than 1.5 mln
(ie. 1 500 000).

Solution:
Let f1, f2, f5, f10 : (−1, 1)→ R be given by

f1(x) =

∞∑
n=0

xn =
1

1− x
=

1 + x+ · · ·+ x9

1− x10

f2(x) =

∞∑
n=0

x2n =
1

1− x2
=

1 + x2 + · · ·+ x8

1− x10

f5(x) =

∞∑
n=0

x5n =
1

1− x5
=

1 + x5

1− x10

f10(x) =

∞∑
n=0

x10n =
1

1− x10
=

1

1− x10
.

The number we are looking for is the coefficient a1000 of the function

g(x) =

∞∑
n=0

anx
n = f1(x)f2(x)f5(x)f10(x)

=
(1 + x+ · · ·+ x9)(1 + x2 + · · ·+ x8)(1 + x5)

(1− x10)4

=
(1 + · · ·+ 7x10 + · · ·+ 2x20 + x21 + x22)

(1− x10)4
.

It is easy to check that

h(x) =
1

(1− x)k
=

∞∑
n=0

(
n+ k − 1

k − 1

)
xn

for every |x| < 1. Gathering together all the facts above gives

a1000 = 2

(
98 + 3

3

)
+ 7

(
99 + 3

3

)
+

(
100 + 3

3

)
= 1 712 051 > 1500000 .

�
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PROBLEM 7:
Let f ∈ C1(R) be a differentiable function such that it has a second derivative at 0, ie. the limit f ′′(0) =

lim
x→0

f ′(x)−f ′(0)
x does exist. Let now F : [−1, 1]→ R satisfy

F (x) =


f(x)− f(0)

x
for x 6= 0

f ′(0) for x = 0

Calculate F ′(0).

Solution:
The function f can be represented as Taylor series in Peano’s form, ie. with the reminder in Landau’s little-o

form:

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 + o(x2), as x→ 0 .

So
F (x)− F (0)

x
=

1

2
f ′′(0) +

o(x2)

x2
x→0−→ 1

2
f ′′(0) .

�
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PROBLEM 8:
Let a sequence of functions fn : (0, 1)→ (0,+∞) be defined as follows:

f0(x) = x and fn+1(x) =
n+1

√
n+ 1 +

(
fn(x)

)n+1
.

Prove that a sequence {fn}n≥0 is convergent and lim
n→∞

fn(x) < x+ 3+7
√
3

6 .

Solution:
First, observe that

fn+1(x) = n+1
√
n+ 1 + fn(x)n+1 > n+1

√
fn(x)n+1 = fn(x).

This follows that a sequence (fn(x)) is increasing. In addition, f1(x) = 1 + x, f2(x) =
√

3 + 2x+ x2 <
√

3 + x and
fn(x) >

√
3 for n ≥ 3. Since

fn+1(x) = n+1
√
n+ 1 + fn(x)n+1 ,

it follows that

n+ 1 =
(
fn+1(x)− fn(x)

)(
fn+1(x)n + fn+1(x)n−1fn(x) + ...+ fn(x)n

)
>
(
fn+1(x)− fn(x)

)
(n+ 1)fn(x)n+1.

Consequently, for n ≥ 2, we obtain

fn+1(x)− fn(x) <
( 1

fn(x)

)n
<
( 1√

3

)n
for n ≥ 2. Let n > 2. Then

fn(x)− f2(x) =

n−2∑
k=2

(
fk+1(x)− fk(x)

)
<

+∞∑
k=2

( 1√
3

)k
<

1√
3(
√

3− 1)
=

3 +
√

3

6
.

Consequently,

fn(x) < x+
√

3 +
3 +
√

3

6
= x+

3 + 7
√

3

6
.

This implies that a sequence (fn(x))n≥0 is bounded. Thus, it is convergent and

lim
n→∞

fn(x) < x+
3 + 7

√
3

6
,

which completes the solution. �
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PROBLEM 9:
Let P : Ω → [0, 1] be a probability measure defined on the space of elementary events Ω. For any integer n > 0

find the minimal number M(n) such that if the sets of events A1, A2, . . . An ⊂ Ω (measurable with respect to P )
satisfy

∑n
i=1 P (Ai) > M(n), then intersection A1 ∩A2 ∩ · · · ∩An is non-empty.

Solution:
It is easy to see, that if any point of Ω is in exactly n − 1 of sets Ai, then intersection is empty and the sum of

probabilities
∑n
i=1 P (Ai) is n − 1. Thus M(n) ≥ n − 1. We will show equality: suppose, that

∑
P (Ai) > n − 1.

Denote A′ = Ω \A complement of A]. We have

µ
(⋂

Ai
)

= 1− P
((⋂

Ai
)′)

= 1− P
(⋃

A′i
)
≥ 1−

∑
P (A′i)

= 1−
∑(

1− P (Ai)
)

= 1− n+
∑

P (Ai) > 1− n+ n− 1 = 0.

Thus the intersection has nonzero probability, so it is non-empty. �
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PROBLEM 10:
Let X1 be a number chosen randomly (with the same probability for each element) from the set {0, 1, . . . , 2017}.

Then we choose randomly a number X2 ∈ {0, . . . , X1}. And so on, in the same way we choose randomly and

independently a number Xn+1 ∈ {0, . . . , Xn}. What is the probability that
∞∑
n=1

Xn < +∞?

Solution:
We have the conditional mean value E(Xk+1|Xk) = 1

2Xk for k = 1, 2, . . . , so E(Xn) = E
(
E(Xn|Xn−1)

)
=

1
2E(Xn−1) = · · · = 1

2n−1E(X1) = 2017
2n . Hence

E
( ∞∑
n=1

Xn

)
=

∞∑
n=1

2017

2n
= 2017 < +∞ .

This shows that probability that series
∞∑
n=1

Xn is infinite equals to 0. So Prob
( ∞∑
n=1

Xn <∞
)

= 1. �
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