Individual Part

PROBLEM 1:
Find all square roots of the matrix

—_

6
6
25

M =

S O =~
S © ot

(Matrix B is said to be a square root of M if the matrix product B - B is equal to M, ie. B2 = M)

Solution:
Since M is upper-triangular, its eigenvalues are its diagonal entries, that is, 4, 9 and 25. Let S be a matrix whose
columns are eigenvectors of M for the respective eigenvalues 4, 9, 25. Then S has the following form:

1 1 1
S=10 1 1
0 0 1

It is not hard to see that

1 -1 O
St=(0 1 -1
0 O 1
Moreover,
4 0 O
D:=S'MS=[0 9 0
0 0 25

The number of square roots of M is the same as the number of square roots of its diagonalization D. It follows from
the fact that E is a square root of M if and only if SES~! is a square root of D. Let E be a square root of D.
Then EE = D and hence ED = DE. Thus, the latter equality implies that F must preserve eigenspaces of D and
consequently FF must be diagonal. Hence, we deduce that D has exactly eight square roots, namely

+2 0 0
VD=|0 £3 0
0 0 45
Hence all solutions to X2 = M are:
2 1 2 -2 5 2 2 -5 8 2 1 -8
+(o 3 2], (0o 3 2], (o =3 8|, [0 3 —s],
0 0 5 0 0 5 0 0 5 0 0 -5



PROBLEM 2:
Let f: Ry — Ry be a monotonic function satisfying f(z) + f(y) = f(x +y + ay) for all z,y € Ry. Find the
f(2)

value ——=.

f)

Solution:
Put f(z) = h(1+x), ie. h(x) = f(x —1). Thus h: (1,400) = (0,+00) and h(z) + h(y) = f(x — 1)+ f(y — 1) =
f(zy — 1) = h(zy). Tt is well known fact (see lemma) that h(x) = log, « for some « > 1. Hence f(z) =log, (1 + x
f(2) _log,3
and —= =
f()  log,2
Lemma [Functional eq. for logarithm]: The monotonic functions f : (1,4+00) = Ry satisfying f(x)+ f(y) = f(zy)
for z,y > 0 are of the form f(x) =log, x for a > 1.
Proof of the Lemma: Putting y = x gives f(2?) = 2f(z). With y = kz we get f(z**!) = (k + 1)f(x) for
k =1,2,.... Putting x = &2 in the last formula gives f(z'/*) = +f(z). Hence we get f(x?) = qf(z) for every
x > 1 and rational ¢ € Q.
As function f is monotonic, it has its right and left limits in every point of its domain. So f(z") is between
nl;rrgc f(zPr) = tlirgl f(t") and nl;rrgo flzi) = tlir;1+ f(t") for any real number r € R} and two sequences of rationals

= log, 3.

Dnyqn — Tsuch that ... <pp, < ppy1 < ... <7 <...<gnt1 < qn <.... But f(z?)— f(aP) = (g, —pn) f(x) — 0,
hence f(z") = rf(x) for any x > 1 and r > 0. Now it is enough to take a« = max{x | f(z) < 1} to have f(a') =t,
ie. f(z)=log, . °

O



PROBLEM 3:

Alice and Ben play a following game: they choose a sequence of two results of coin toss, then they throw a coin
until one of those sequences appear. The game is won by whose sequence appeared first.

Ben chose “HH”, and before Alice made her move, she has discovered that the coin is unfair: the heads come out
with probability 2/3. What sequence should Alice choose to maximize her probability of winning the game? And
what is this probability?

Solution:
Alice can choose one of the following sequences: (a) “TH”, (b) “HT” and (c) “T'T”. In these cases the game can
be represented as the following directed graphs:

() g (6) L)
F/;yH e S P/;H\> HH F//7H il
i \ \‘/“‘\’ iTART\ /; 4;? START ) b
e pt deb Y \
A_P\&\ [ —> TH i l/\ BT !~[’\*'r T — 2R
O e 5
1~p ' r

So in the case (a) the probability to get “HH?” first is only p? = 4/9, hence “TH” will appear first with probability
1—p? = 5/9.r In the case (b) every game has to pass the point “H”, after that the probability to get “HH” is p = 2/3,
and to get “HT” is 1 —p =1/3.

And in the case (¢) we have

Prob(“HH first) = p(p+ (1= p)p+p(1 = p)p+ (1 = p)p(1 —p)p+ -+ )

oo

=p(p+p(l—-p) > (1-p)"p"

n=0

_ P(2-p) _ 16
I-(1-pp 21
To get the probability for “T'T” it is enough to interchange p and 1 — p, ie.

RY
Prob(“TT" first) — Ut PI=P" _ 5

1-(1-pp 21

In the conclusion Alice should choose “HT”, and then her probability to win will be 5/9. ]



PROBLEM 4:

Calculate the number of subsets of the set {0,1,...,10} which contain no three consecutive elements.
Solution:
Let C,, be the number of subsets of the set {0,1,...,n} with no three consecutive elements. These subsets either

contain n, or they do not. In the first case either they contain n — 1 as their element, or they do not. If n — 1 and n
are their element, then they do not contain n — 2. So their number is a sum of C,,_3 and C),_».
In the second case their number equals to C,,_;. Hence

Cn = Cnfl + Cn72 + Cn73 .

Direct computation shows that Cyp = 2 (@ and {0}), C; =4 (@, {0}, {1} and {0,1}) and Cy =7 (@, {0}, {1}, {2},
{0,1}, {0,2} and {1,2}). So

C 11 1\"7? /Cy
C..|l=[1 0 o0 Cy
Ch_s 01 0 Co
Hence Cq9 = 927. O



PROBLEM 5:
Calculate the integral

400 1 .
/ (1- cos;:) sinw
x
0
Solution:
We have
400 +oo 1 1 +oo d
1 .
/ M / /sm :Ctdt Smxdmz/(/sinxt sinxl) dt,
T T
0 0 0 0

since all integrand functions are bounded, uniformly continuous and integrable. Let

1 —+00 d
= / / sinzt sinx e % —x) dt .
T
0

The integral we want to calculate is equal to I(0).

The trigonometric formulas gives sinat sinz = %(cos(l —t)x — cos(1 + t)w) Moreover, for the same reason as

before (ie. all functions are bounded, uniformly continuous and integrable), we have

1 +o0o
/ / cos(1 — t)z — cos(1 + t)z)e wxdz)dt.
0

The easy integration by parts shows that

—+o0
/cosaxeﬁwdx: %52.
0
Thus .
d 1 w w 1
%I(w) = —5/ ((1—t)2+w2 - (1+t)2+w2)dt: iarctan2w—arctanw.
0
Now we have hIJIrl I(w) =0 and [arctanz dz = z arctanz — log v/1+ 22 + C. Hence
w—r+00
o 1+ 4002
_|_
I1(0)=— [ I'(w)dw = lim log—r— =1log2.
©0) == [ Iwhdw= lim_log I — 1og
0

Solution 2:



Lemma [|: Let f : Ry — R be an integrable real function, such that limits liII(l)+ f(z) = fo and
T—

exist. Then

+oo
/ f(ax);f(ﬁx)dx _ (fo _foo)logg
0

for any real o, f > 0.
Proof of the Lemma: We have

7Ef<x>
—Zdx

/E
for 0 < e < E < +00. Hence

foz) @, T,
L P Iy (L
ol

Let now f(z) = C + o(1) with z — 0T or 400, where o is Landau’s little-o symbol. Thus

BX BX
C+o(1 AX
/ f(;)dx _ / +TO()dx — (C+o(1)) logz| = (C+0(1)) 1og§.
aX aX “
Hence letting ¢ — 07 and E — +oo leads to
T fo) — £(8) 8
ax) — f(Bx
- 7 - = 1 — i = - 1 .
/ T de ah_>r%+ L Egrfoo I = (fo = Joc) log a
We have ) .
(1 —cosw)sing  SBEL _ 2cosLsii  f(z) _ f(27)
x? B x B z
where f(z) = #22_So, as lir%)l+ f(z) =1and hm f(x) =0, we get
Tr—r
+oo 1 9
/ (1 —cosz)sinz blnl‘ /f :(1_0)10g1210g2.

0

oo (%)

= foo



Team Part

PROBLEM 1:
Calculate the integral

1
x
/ arctan dz.
0 11—z

Solution:
T

It is easy to check that % arctan ——— = Thus we can compute the integral by integration by parts

1
11—z 2x2 —2x+1"

taking © — % as anti-derivative of 1:

1 1 1
_/ _ Y73 g
o Jo 222 -22+1
1

1 1
= mlir{lﬁ(x— §)arctan T2~ Zln(?zz —2z+1) . = %

1
x 1 T

1- t der = (r — = t
/0 arctan T——dz (z 2)arcan1_x




PROBLEM 2:
Let f:(0,00) — (0,00) be a continuous function with the following properties:

(1) fz+y) < f(z)+ f(y), for every z,y € (0,00),

= fl@)
2 .
(2) . 1142 dr < oo
Find |
LS o)
T—r00 €T
Solution:

Let A, = [2",2"H1] for every n € N, let
f(@) and b, = inf M

an = sup ——-
z€A, T T€EA, T

and let x,,,y, € A, be such that a, = @ and b, = Fn) Then

Yn
T 2£E-,L+1 2 Tn41 Tn41
0<Gn+1=f( n+1):f( 2 )< f( 2 >:f(a:ni1)<an
Tn+1 Tn+1 Tn+1 5
Moreover
Unyo = f(y + Ln+2 — yn) g f(yn) Yn + f(xn+2 - yn) Tn+2 — Yn < bn Yn + an-rn+2 — Yn
Tn42 Yn Tn42 Tn42 — Yn Tn+2 Tn+2 Tn+2
b, + Ta
g n 8 n
We have

< fx) = f(z) / flz) = / 1 by, In(2)
> e =) 2 ey >y
/0 1122 dz > 502 dzx 2 [ 5,2 dz > 2 by, 2 dr > 5

1

n n=0
so the series ZZOZO by, is convergent. Since a,4o < %,
k k—2
E an§7ao+7a1+g b,
n=2 n=0

for every k > 2. Hence the series ZZO:O ay, is convergent. Since the sequence (a,) is decreasing,
2(a[z) + - +an) = nay.

On the other hand, since the series ZZOZO an is convergent for every ¢ > 0, there exists N such that na, < e for
every n > N Hence lim,,_, ., na, = 0. Applying the fact that

w < ap(n+1)In(2)

for every z € A, gives lim,_, W =0. 0



PROBLEM 3:

Determine for which n = 1,2, ... there exists a solution to matrix equation X2+ X +1I,, = 0,, in the space M, (Fy)
of nxn matrices with entries from the smallest field, ie. Fy = ({0, 1}, +, ) with0+0=1+1=0,0+1=14+0=1
and 0-0=0-1=1-0=0,1-1=1. The matrices I,, and 0,, are the identity matrix and the zero matrix of dimension
nxn.

Solution:
The polynomial 22 + 2 + 1 has no zeroes in Fy, as x(x + 1) = 0 for all z € F5 = {0, 1}, so there is no solution

in M;(F2). The matrices <} (1)> and are the solutions to that equations in My (F3), what can be verified

1 1
directly. Hence the equation has solution in My, (F2), namely

Vi

Vi

where Vi,...,V, are the solutions in Ms(FFs).

In the case of n odd we proceed as following. Let Ky be the analytic closure of the field Fsy, and let £1,e5 € Kq
be two solutions to 22 +x+1=0. We have 1 +e3 =1 =¢1 -5 and g1 + €1 = 0 = &5 + £ of course.

Now every eigenvalue of the possible solution X should satisfy 22 +z + 1 = 0, so they all are equal to either £,
or 9. But as number of eigenvalues (with their multiplicity) is odd, there are also odd number of either £; or e
among them, when the number of other eigenvalues are even. Hence the trace of X equals to either ;1 or €5, which
is not possible because they are not elements of F. ([l



PROBLEM 4:
Let M be a square matrix. Define

1 1 1
cos(M) ::I_5M2+IM4_EMG+“"

where I is the identity matrix. Calculate cos(M) for

™ (7T =3
w-z( P

Solution:
Let

Then I [ N et

Observe that (1,1)7 is an eigenvector for an eigenvalue A = 4, but (1, —1)7 is an eigenvector for an eigenvalue A = 10.

Furthermore,
11\ (12 12
1 -1) “\1j2 -172)-
Hence
11 1 0\ 1/m\2/4% 0 Lm\d (4t 0 Lo\
COS(M)—<1 1> Ko 1>_2!(2) (0 102)+4!(2) (0 104)_ } (1 1)
-1
1 1 1 1
-(1 2)e0 L)
where
= k1 2k
o ];::0(—1) (2k)!(27r) 0 (COS(27T) 0 )
= o - 0 5
0 5 (~1)F by (572 cos(5m)
k=0
Finally,

w0 = (1 L) (87 o) (15 R =00 )G ) G5 )= ()

10



PROBLEM 5:
Let G be a group such that a®b® = (ab)® and a®b® = (ab)® for each a,b € G. Show that G is abelian (ie. ab = ba
for all a,b € G).

Solution:
It is easy to see that
a®b®(ab)® = ababab = a*b* = baba

and
a®b® = (ab)® = ababababab = a*b* = babababa.

Both above equalities gives
a’b?a’h? = a*v? = bv%a® = b = baba = ab = ba

for all a,b € G. O

11



PROBLEM 6:
Verify wether the number of ways to exchange 10 Euro into coins of value 1, 2, 5 and 10 cents (we assume that

two families of coins with the same numbers of coins of the same value coincide) are greater or smaller than 1.5 mln
(ie. 1 500 000).

Solution:
Let f1, f2, f5, f10 : (—1,1) — R be given by

(o) C
1 1+z+---42°
— n __ —
=S = = F

[eS)
1 1+a2%+ - +2a8

_ 2n _ _
f2($)*;x 1_£2 1_£10

= s 1 1+ a2
oty =Y = L=
n=0

S l-a2%  1—2g0

> 1 1

_ 10n _ _
fo(w) =3« = T g0
n=0

The number we are looking for is the coefficient ayggg of the function

9(x) = anz" = f1(x) fo(x) f5(2) fro(x)
n=0

Q4+z+-+2)1+22+ - +28)(1 +2°)

(1 —g10)4
_(1+~-~+7x10+-~-+2x20+x21+x22)
(1— z10)4 :
It is easy to check that
1 S~ (n+k—1
h = — n
)= G—op Z( )

for every |z| < 1. Gathering together all the facts above gives

98+ 3 99+ 3 100+ 3
a1000=2< ;)4—7( ;)—i—( 3+ ):1712051>1500000.

12



PROBLEM 7:
Let f € C'(R) be a differentiable function such that it has a second derivative at 0, ie. the limit f”(0) =

lim £ @=1© {oes exist. Let now F : [—1,1] — R satisfy

x—0 z

M for z # 0

1(0) forx =0

Calculate F'(0).

Solution:
The function f can be represented as Taylor series in Peano’s form, ie. with the reminder in Landau’s little-o

form:

F) = 0) + £+ L0 +o(a?),  asz 0.
So
T) — o(x?) .-
F( )x F(0) :§f=//(())Jr (xz) 49 %f//(()).

13



PROBLEM 8:
Let a sequence of functions f, : (0,1) — (0,400) be defined as follows:

fo(x) =z and fri1(z) =" \1/n +1+ (fn(x))n-'rl )

Prove that a sequence {f,, },n>0 is convergent and lim f,(z) <z + %ﬁ.
- n—oo

Solution:
First, observe that

fn+1(17) = n+{/n +1+ sz(x)n+1 > n+{/fn(z)n+l = fn(x)

This follows that a sequence (f, (7)) is increasing. In addition, fi(x) =1+, fo(z) = V3 + 22+ 22 < /3 + 2 and
ful(z) > v/3 for n > 3. Since

fn+1(z) = n+{/n +1+ fn(x)n+1 ,
it follows that

n+1=(fop1(@) = fu(@) (far1 (@)™ + fas1 (@) fo(@) + oo+ fu(@)") > (fas1 (@) = fol@)) (0 + 1) fr (@)

Consequently, for n > 2, we obtain

for n > 2. Let n > 2. Then

n—2 too k
fu(x) = fo(x) = Z (fk+1(15) - fk(m)) < Z (%) < \/g(\/lg_ 1) - - +6\/§'

Consequently,

3+V3 3+7V3
fa() <2+ V3 + +6\[:x+ +6‘[.

This implies that a sequence (f,,(z)),>0 is bounded. Thus, it is convergent and
34+ 7v3
lim f,(z) <z+ +6\[’

n—oo

which completes the solution. O

14



PROBLEM 9:

Let P: Q — [0,1] be a probability measure defined on the space of elementary events 2. For any integer n > 0
find the minimal number M (n) such that if the sets of events A;, As,... A, C Q (measurable with respect to P)
satisfy > 1", P(A;) > M(n), then intersection A; N A>N---N A, is non-empty.

Solution:

It is easy to see, that if any point of €2 is in exactly n — 1 of sets A;, then intersection is empty and the sum of
probabilities > " | P(A4;) is n — 1. Thus M(n) > n — 1. We will show equality: suppose, that > P(4;) > n — 1.
Denote A’ = 2\ A complement of A]. We have

p(N4) =1-P((NA)) =1-P(Ja) =1-3 P(a)
:1—2(1—P(Ai)) =1-n+Y P(A4)>1-n+n-1=0.

Thus the intersection has nonzero probability, so it is non-empty. O

15



PROBLEM 10:
Let X7 be a number chosen randomly (with the same probability for each element) from the set {0,1,...,2017}.
Then we choose randomly a number X5 € {0,...,X;}. And so on, in the same way we choose randomly and

independently a number X, 1 € {0,...,X,}. What is the probability that > X, < 4o00?
n=1

Solution:
We have the conditional mean value E(Xj11|Xy) = 3X5 for k = 1,2,..., so E(X,) = E(E(X,|Xn-1)) =
1E(X,o1) =+ = 5::5E(Xy) = 2. Hence

]E(ian) -y %17:2017<+oo.

n=1

This shows that probability that series Y X, is infinite equals to 0. So Prob( S Xn < oo) =1 O
n=1

n=1

16



